Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cognitive science as a source of forward and inverse models of human decisions for robotics and control (2109.00127v1)

Published 1 Sep 2021 in cs.AI, cs.RO, cs.SY, and eess.SY

Abstract: Those designing autonomous systems that interact with humans will invariably face questions about how humans think and make decisions. Fortunately, computational cognitive science offers insight into human decision-making using tools that will be familiar to those with backgrounds in optimization and control (e.g., probability theory, statistical machine learning, and reinforcement learning). Here, we review some of this work, focusing on how cognitive science can provide forward models of human decision-making and inverse models of how humans think about others' decision-making. We highlight relevant recent developments, including approaches that synthesize blackbox and theory-driven modeling, accounts that recast heuristics and biases as forms of bounded optimality, and models that characterize human theory of mind and communication in decision-theoretic terms. In doing so, we aim to provide readers with a glimpse of the range of frameworks, methodologies, and actionable insights that lie at the intersection of cognitive science and control research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mark K. Ho (21 papers)
  2. Thomas L. Griffiths (150 papers)
Citations (31)
Youtube Logo Streamline Icon: https://streamlinehq.com