Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting Stochastic Governing Laws by Nonlocal Kramers-Moyal Formulas (2108.12570v2)

Published 28 Aug 2021 in math.DS, math.PR, and stat.ML

Abstract: With the rapid development of computational techniques and scientific tools, great progress of data-driven analysis has been made to extract governing laws of dynamical systems from data. Despite the wide occurrences of non-Gaussian fluctuations, the effective data-driven methods to identify stochastic differential equations with non-Gaussian L\'evy noise are relatively few so far. In this work, we propose a data-driven approach to extract stochastic governing laws with both (Gaussian) Brownian motion and (non-Gaussian) L\'evy motion, from short bursts of simulation data. Specifically, we use the normalizing flows technology to estimate the transition probability density function (solution of nonlocal Fokker-Planck equation) from data, and then substitute it into the recently proposed nonlocal Kramers-Moyal formulas to approximate L\'evy jump measure, drift coefficient and diffusion coefficient. We demonstrate that this approach can learn the stochastic differential equation with L\'evy motion. We present examples with one- and two-dimensional, decoupled and coupled systems to illustrate our method. This approach will become an effective tool for discovering stochastic governing laws and understanding complex dynamical behaviors.

Citations (14)

Summary

We haven't generated a summary for this paper yet.