Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A practical method for recovering Sturm-Liouville problems from the Weyl function (2101.08930v2)

Published 22 Jan 2021 in math.CA, cs.NA, math.CV, math.NA, and math.SP

Abstract: In the paper we propose a direct method for recovering the Sturm-Liouville potential from the Weyl-Titchmarsh $m$-function given on a countable set of points. We show that using the Fourier-Legendre series expansion of the transmutation operator integral kernel the problem reduces to an infinite linear system of equations, which is uniquely solvable if so is the original problem. The solution of this linear system allows one to reconstruct the characteristic determinant and hence to obtain the eigenvalues as its zeros and to compute the corresponding norming constants. As a result, the original inverse problem is transformed to an inverse problem with a given spectral density function, for which the direct method of solution from arXiv:2010.15275 is applied. The proposed method leads to an efficient numerical algorithm for solving a variety of inverse problems. In particular, the problems in which two spectra or some parts of three or more spectra are given, the problems in which the eigenvalues depend on a variable boundary parameter (including spectral parameter dependent boundary conditions), problems with a partially known potential and partial inverse problems on quantum graphs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.