Optimal short-time measurements for Hamiltonian learning (2108.08824v2)
Abstract: Characterizing noisy quantum devices requires methods for learning the underlying quantum Hamiltonian which governs their dynamics. Often, such methods compare measurements to simulations of candidate Hamiltonians, a task which requires exponential computational complexity. Here, we propose efficient measurement schemes based on short-time dynamics which circumvent this exponential difficulty. We provide estimates for the optimal measurement schedule and reconstruction error, and verify these estimates numerically. We demonstrate that the reconstruction requires a system-size independent number of experimental shots, and identify a minimal set of state preparations and measurements which yields optimal accuracy for learning short-ranged Hamiltonians. Finally, we show how grouping of commuting observables and use of Hamiltonian symmetries improve the accuracy of the Hamiltonian reconstruction.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.