Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incremental cluster validity index-guided online learning for performance and robustness to presentation order (2108.07743v1)

Published 17 Aug 2021 in cs.LG

Abstract: In streaming data applications incoming samples are processed and discarded, therefore, intelligent decision-making is crucial for the performance of lifelong learning systems. In addition, the order in which samples arrive may heavily affect the performance of online (and offline) incremental learners. The recently introduced incremental cluster validity indices (iCVIs) provide valuable aid in addressing such class of problems. Their primary use-case has been cluster quality monitoring; nonetheless, they have been very recently integrated in a streaming clustering method to assist the clustering task itself. In this context, the work presented here introduces the first adaptive resonance theory (ART)-based model that uses iCVIs for unsupervised and semi-supervised online learning. Moreover, it shows for the first time how to use iCVIs to regulate ART vigilance via an iCVI-based match tracking mechanism. The model achieves improved accuracy and robustness to ordering effects by integrating an online iCVI framework as module B of a topological adaptive resonance theory predictive mapping (TopoARTMAP) -- thereby being named iCVI-TopoARTMAP -- and by employing iCVI-driven post-processing heuristics at the end of each learning step. The online iCVI framework provides assignments of input samples to clusters at each iteration in accordance to any of several iCVIs. The iCVI-TopoARTMAP maintains useful properties shared by ARTMAP models, such as stability, immunity to catastrophic forgetting, and the many-to-one mapping capability via the map field module. The performance (unsupervised and semi-supervised) and robustness to presentation order (unsupervised) of iCVI-TopoARTMAP were evaluated via experiments with a synthetic data set and deep embeddings of a real-world face image data set.

Citations (6)

Summary

We haven't generated a summary for this paper yet.