Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incremental Cluster Validity Indices for Hard Partitions: Extensions and Comparative Study (1902.06711v1)

Published 18 Feb 2019 in cs.LG and stat.ML

Abstract: Validation is one of the most important aspects of clustering, but most approaches have been batch methods. Recently, interest has grown in providing incremental alternatives. This paper extends the incremental cluster validity index (iCVI) family to include incremental versions of Calinski-Harabasz (iCH), I index and Pakhira-Bandyopadhyay-Maulik (iI and iPBM), Silhouette (iSIL), Negentropy Increment (iNI), Representative Cross Information Potential (irCIP) and Representative Cross Entropy (irH), and Conn_Index (iConn_Index). Additionally, the effect of under- and over-partitioning on the behavior of these six iCVIs, the Partition Separation (PS) index, as well as two other recently developed iCVIs (incremental Xie-Beni (iXB) and incremental Davies-Bouldin (iDB)) was examined through a comparative study. Experimental results using fuzzy adaptive resonance theory (ART)-based clustering methods showed that while evidence of most under-partitioning cases could be inferred from the behaviors of all these iCVIs, over-partitioning was found to be a more challenging scenario indicated only by the iConn_Index. The expansion of incremental validity indices provides significant novel opportunities for assessing and interpreting the results of unsupervised learning.

Citations (4)

Summary

We haven't generated a summary for this paper yet.