Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recommending Insurance products by using Users' Sentiments (2108.06210v1)

Published 5 Aug 2021 in cs.IR, cs.AI, cs.CY, and cs.LG

Abstract: In today's tech-savvy world every industry is trying to formulate methods for recommending products by combining several techniques and algorithms to form a pool that would bring forward the most enhanced models for making the predictions. Building on these lines is our paper focused on the application of sentiment analysis for recommendation in the insurance domain. We tried building the following Machine Learning models namely, Logistic Regression, Multinomial Naive Bayes, and the mighty Random Forest for analyzing the polarity of a given feedback line given by a customer. Then we used this polarity along with other attributes like Age, Gender, Locality, Income, and the list of other products already purchased by our existing customers as input for our recommendation model. Then we matched the polarity score along with the user's profiles and generated the list of insurance products to be recommended in descending order. Despite our model's simplicity and the lack of the key data sets, the results seemed very logical and realistic. So, by developing the model with more enhanced methods and with access to better and true data gathered from an insurance industry may be the sector could be very well benefitted from the amalgamation of sentiment analysis with a recommendation.

Summary

We haven't generated a summary for this paper yet.