Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Random Rank-Based, Hierarchical or Trivial: Which Dynamic Graph Algorithm Performs Best in Practice? (2108.04564v1)

Published 10 Aug 2021 in cs.DS

Abstract: Fully dynamic graph algorithms that achieve polylogarithmic or better time per operation use either a hierarchical graph decomposition or random-rank based approach. There are so far two graph properties for which efficient algorithms for both types of data structures exist, namely fully dynamic (Delta + 1) coloring and fully dynamic maximal matching. In this paper we present an extensive experimental study of these two types of algorithms for these two problems together with very simple baseline algorithms to determine which of these algorithms are the fastest. Our results indicate that the data structures used by the different algorithms dominate their performance.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.