Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning an Augmented RGB Representation with Cross-Modal Knowledge Distillation for Action Detection (2108.03619v1)

Published 8 Aug 2021 in cs.CV

Abstract: In video understanding, most cross-modal knowledge distillation (KD) methods are tailored for classification tasks, focusing on the discriminative representation of the trimmed videos. However, action detection requires not only categorizing actions, but also localizing them in untrimmed videos. Therefore, transferring knowledge pertaining to temporal relations is critical for this task which is missing in the previous cross-modal KD frameworks. To this end, we aim at learning an augmented RGB representation for action detection, taking advantage of additional modalities at training time through KD. We propose a KD framework consisting of two levels of distillation. On one hand, atomic-level distillation encourages the RGB student to learn the sub-representation of the actions from the teacher in a contrastive manner. On the other hand, sequence-level distillation encourages the student to learn the temporal knowledge from the teacher, which consists of transferring the Global Contextual Relations and the Action Boundary Saliency. The result is an Augmented-RGB stream that can achieve competitive performance as the two-stream network while using only RGB at inference time. Extensive experimental analysis shows that our proposed distillation framework is generic and outperforms other popular cross-modal distillation methods in action detection task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rui Dai (28 papers)
  2. Srijan Das (35 papers)
  3. Francois Bremond (114 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.