Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Unsupervised Learning of Debiased Representations with Pseudo-Attributes (2108.02943v2)

Published 6 Aug 2021 in cs.LG

Abstract: Dataset bias is a critical challenge in machine learning since it often leads to a negative impact on a model due to the unintended decision rules captured by spurious correlations. Although existing works often handle this issue based on human supervision, the availability of the proper annotations is impractical and even unrealistic. To better tackle the limitation, we propose a simple but effective unsupervised debiasing technique. Specifically, we first identify pseudo-attributes based on the results from clustering performed in the feature embedding space even without an explicit bias attribute supervision. Then, we employ a novel cluster-wise reweighting scheme to learn debiased representation; the proposed method prevents minority groups from being discounted for minimizing the overall loss, which is desirable for worst-case generalization. The extensive experiments demonstrate the outstanding performance of our approach on multiple standard benchmarks, even achieving the competitive accuracy to the supervised counterpart.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.