Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and polynomial time construction of biregular, bipartite Ramanujan graphs of all degrees (2108.02534v1)

Published 5 Aug 2021 in math.CO and cs.DS

Abstract: We prove that there exist bipartite, biregular Ramanujan graphs of every degree and every number of vertices provided that the cardinalities of the two sets of the bipartition divide each other. This generalizes a result of Marcus, Spielman, and Srivastava and, similar to theirs, the proof is based on the analysis of expected polynomials. The primary difference is the use of some new machinery involving rectangular convolutions, developed in a companion paper. We also prove the constructibility of such graphs in polynomial time in the number of vertices, extending a result of Cohen to this biregular case.

Citations (3)

Summary

We haven't generated a summary for this paper yet.