Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Constructing Ramanujan Graphs Using Shift Lifts (1502.07410v3)

Published 26 Feb 2015 in math.CO and cs.CC

Abstract: In a breakthrough work, Marcus-Spielman-Srivastava recently showed that every $d$-regular bipartite Ramanujan graph has a 2-lift that is also $d$-regular bipartite Ramanujan. As a consequence, a straightforward iterative brute-force search algorithm leads to the construction of a $d$-regular bipartite Ramanujan graph on $N$ vertices in time $2{O(dN)}$. Shift $k$-lifts studied by Agarwal-Kolla-Madan lead to a natural approach for constructing Ramanujan graphs more efficiently. The number of possible shift $k$-lifts of a $d$-regular $n$-vertex graph is $k{nd/2}$. Suppose the following holds for $k=2{\Omega(n)}$: There exists a shift $k$-lift that maintains the Ramanujan property of $d$-regular bipartite graphs on $n$ vertices for all $n$. () Then, by performing a similar brute-force search algorithm, one would be able to construct an $N$-vertex bipartite Ramanujan graph in time $2{O(d\,log2 N)}$. Furthermore, if () holds for all $k \geq 2$, then one would obtain an algorithm that runs in $\mathrm{poly}_d(N)$ time. In this work, we take a first step towards proving (*) by showing the existence of shift $k$-lifts that preserve the Ramanujan property in $d$-regular bipartite graphs for $k=3,4$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.