Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DRL-based Slice Placement Under Non-Stationary Conditions (2108.02495v1)

Published 5 Aug 2021 in cs.NI and cs.LG

Abstract: We consider online learning for optimal network slice placement under the assumption that slice requests arrive according to a non-stationary Poisson process. We propose a framework based on Deep Reinforcement Learning (DRL) combined with a heuristic to design algorithms. We specifically design two pure-DRL algorithms and two families of hybrid DRL-heuristic algorithms. To validate their performance, we perform extensive simulations in the context of a large-scale operator infrastructure. The evaluation results show that the proposed hybrid DRL-heuristic algorithms require three orders of magnitude of learning episodes less than pure-DRL to achieve convergence. This result indicates that the proposed hybrid DRL-heuristic approach is more reliable than pure-DRL in a real non-stationary network scenario.

Citations (6)

Summary

We haven't generated a summary for this paper yet.