2000 character limit reached
Dark soliton detection using persistent homology (2107.14594v2)
Published 21 Jul 2021 in physics.atom-ph, eess.IV, and quant-ph
Abstract: Classifying images often requires manual identification of qualitative features. Machine learning approaches including convolutional neural networks can achieve accuracy comparable to human classifiers, but require extensive data and computational resources to train. We show how a topological data analysis technique, persistent homology, can be used to rapidly and reliably identify qualitative features in experimental image data. The identified features can be used as inputs to simple supervised machine learning models such as logistic regression models, which are easier to train. As an example we consider the identification of dark solitons using a dataset of 6257 labelled atomic Bose-Einstein condensate density images.