Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Topological "Reading" Lesson: Classification of MNIST using TDA (1910.08345v2)

Published 18 Oct 2019 in cs.LG, math.AT, and stat.ML

Abstract: We present a way to use Topological Data Analysis (TDA) for machine learning tasks on grayscale images. We apply persistent homology to generate a wide range of topological features using a point cloud obtained from an image, its natural grayscale filtration, and different filtrations defined on the binarized image. We show that this topological machine learning pipeline can be used as a highly relevant dimensionality reduction by applying it to the MNIST digits dataset. We conduct a feature selection and study their correlations while providing an intuitive interpretation of their importance, which is relevant in both machine learning and TDA. Finally, we show that we can classify digit images while reducing the size of the feature set by a factor 5 compared to the grayscale pixel value features and maintain similar accuracy.

Citations (55)

Summary

We haven't generated a summary for this paper yet.