Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A semi-implicit low-regularity integrator for Navier-Stokes equations (2107.13427v1)

Published 28 Jul 2021 in math.NA and cs.NA

Abstract: A new type of low-regularity integrator is proposed for Navier-Stokes equations, coupled with a stabilized finite element method in space. Unlike the other low-regularity integrators for nonlinear dispersive equations, which are all fully explicit in time, the proposed method is semi-implicit in time in order to preserve the energy-decay structure of NS equations. First-order convergence of the proposed method is established independent of the viscosity coefficient $\mu$, under weaker regularity conditions than other existing numerical methods, including the semi-implicit Euler method and classical exponential integrators. Numerical results show that the proposed method is more accurate than the semi-implicit Euler method in the viscous case $\mu=O(1)$, and more accurate than the classical exponential integrator in the inviscid case $\mu\rightarrow 0$.

Citations (6)

Summary

We haven't generated a summary for this paper yet.