Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the convergence of second-order in time numerical discretizations for the evolution Navier-Stokes equations (2203.00462v1)

Published 1 Mar 2022 in math.NA, cs.NA, and math.AP

Abstract: We prove the convergence of certain second-order numerical methods to weak solutions of the Navier-Stokes equations satisfying in addition the local energy inequality, and therefore suitable in the sense of Scheffer and Caffarelli-Kohn-Nirenberg. More precisely, we treat the space-periodic case in three space-dimensions and we consider a full discretization in which the the classical Crank-Nicolson method ($\theta$-method with $\theta=1/2$) is used to discretize the time variable, while in the space variables we consider finite elements. The convective term is discretized in several implicit, semi-implicit, and explicit ways. In particular, we focus on proving (possibly conditional) convergence of the discrete solutions towards weak solutions (satisfying a precise local energy balance), without extra regularity assumptions on the limit problem. We do not prove orders of convergence, but our analysis identifies some numerical schemes providing also alternate proofs of existence of "physically relevant" solutions in three space dimensions.

Summary

We haven't generated a summary for this paper yet.