Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emotion Recognition under Consideration of the Emotion Component Process Model (2107.12895v2)

Published 27 Jul 2021 in cs.CL, cs.AI, and cs.HC

Abstract: Emotion classification in text is typically performed with neural network models which learn to associate linguistic units with emotions. While this often leads to good predictive performance, it does only help to a limited degree to understand how emotions are communicated in various domains. The emotion component process model (CPM) by Scherer (2005) is an interesting approach to explain emotion communication. It states that emotions are a coordinated process of various subcomponents, in reaction to an event, namely the subjective feeling, the cognitive appraisal, the expression, a physiological bodily reaction, and a motivational action tendency. We hypothesize that these components are associated with linguistic realizations: an emotion can be expressed by describing a physiological bodily reaction ("he was trembling"), or the expression ("she smiled"), etc. We annotate existing literature and Twitter emotion corpora with emotion component classes and find that emotions on Twitter are predominantly expressed by event descriptions or subjective reports of the feeling, while in literature, authors prefer to describe what characters do, and leave the interpretation to the reader. We further include the CPM in a multitask learning model and find that this supports the emotion categorization. The annotated corpora are available at https://www.ims.uni-stuttgart.de/data/emotion.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Felix Casel (1 paper)
  2. Amelie Heindl (1 paper)
  3. Roman Klinger (68 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.