Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Appraisal Theories for Emotion Classification in Text (2003.14155v6)

Published 31 Mar 2020 in cs.CL

Abstract: Automatic emotion categorization has been predominantly formulated as text classification in which textual units are assigned to an emotion from a predefined inventory, for instance following the fundamental emotion classes proposed by Paul Ekman (fear, joy, anger, disgust, sadness, surprise) or Robert Plutchik (adding trust, anticipation). This approach ignores existing psychological theories to some degree, which provide explanations regarding the perception of events. For instance, the description that somebody discovers a snake is associated with fear, based on the appraisal as being an unpleasant and non-controllable situation. This emotion reconstruction is even possible without having access to explicit reports of a subjective feeling (for instance expressing this with the words "I am afraid."). Automatic classification approaches therefore need to learn properties of events as latent variables (for instance that the uncertainty and the mental or physical effort associated with the encounter of a snake leads to fear). With this paper, we propose to make such interpretations of events explicit, following theories of cognitive appraisal of events, and show their potential for emotion classification when being encoded in classification models. Our results show that high quality appraisal dimension assignments in event descriptions lead to an improvement in the classification of discrete emotion categories. We make our corpus of appraisal-annotated emotion-associated event descriptions publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jan Hofmann (5 papers)
  2. Enrica Troiano (11 papers)
  3. Kai Sassenberg (3 papers)
  4. Roman Klinger (68 papers)
Citations (44)

Summary

We haven't generated a summary for this paper yet.