Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
34 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
115 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
453 tokens/sec
Kimi K2 via Groq Premium
140 tokens/sec
2000 character limit reached

Improving Gravitational Search Algorithm Performance with Artificial Bee Colony Algorithm for Constrained Numerical Optimization (1706.03608v1)

Published 16 Jan 2017 in cs.NE

Abstract: In this paper, we propose an improved gravitational search algorithm named GSABC. The algorithm improves gravitational search algorithm (GSA) results improved by using artificial bee colony algorithm (ABC) to solve constrained numerical optimization problems. In GSA, solutions are attracted towards each other by applying gravitational forces, which depending on the masses assigned to the solutions, to each other. The heaviest mass will move slower than other masses and gravitate others. Due to nature of gravitation, GSA may pass global minimum if some solutions stuck to local minimum. ABC updates the positions of the best solutions that has obtained from GSA, preventing the GSA from sticking to the local minimum by its strong searching ability. The proposed algorithm improves the performance of GSA. The proposed method tested on 23 well-known unimodal, multimodal and fixed-point multimodal benchmark test functions. Experimental results show that GSABC outperforms or performs similarly to five state-of-the-art optimization approaches.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.