Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal sampling discretization (2107.11476v1)

Published 23 Jul 2021 in math.FA, cs.NA, math.CA, and math.NA

Abstract: Let $X_N$ be an $N$-dimensional subspace of $L_2$ functions on a probability space $(\Omega, \mu)$ spanned by a uniformly bounded Riesz basis $\Phi_N$. Given an integer $1\leq v\leq N$ and an exponent $1\leq q\leq 2$, we obtain universal discretization for integral norms $L_q(\Omega,\mu)$ of functions from the collection of all subspaces of $X_N$ spanned by $v$ elements of $\Phi_N$ with the number $m$ of required points satisfying $m\ll v(\log N)2(\log v)2$. This last bound on $m$ is much better than previously known bounds which are quadratic in $v$. Our proof uses a conditional theorem on universal sampling discretization, and an inequality of entropy numbers in terms of greedy approximation with respect to dictionaries.

Citations (16)

Summary

We haven't generated a summary for this paper yet.