Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Detection Of Noise Events at Shooting Range Using Machine Learning (2107.11453v1)

Published 23 Jul 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Outdoor shooting ranges are subject to noise regulations from local and national authorities. Restrictions found in these regulations may include limits on times of activities, the overall number of noise events, as well as limits on number of events depending on the class of noise or activity. A noise monitoring system may be used to track overall sound levels, but rarely provide the ability to detect activity or count the number of events, required to compare directly with such regulations. This work investigates the feasibility and performance of an automatic detection system to count noise events. An empirical evaluation was done by collecting data at a newly constructed shooting range and training facility. The data includes tests of multiple weapon configurations from small firearms to high caliber rifles and explosives, at multiple source positions, and collected on multiple different days. Several alternative machine learning models are tested, using as inputs time-series of standard acoustic indicators such as A-weighted sound levels and 1/3 octave spectrogram, and classifiers such as Logistic Regression and Convolutional Neural Networks. Performance for the various alternatives are reported in terms of the False Positive Rate and False Negative Rate. The detection performance was found to be satisfactory for use in automatic logging of time-periods with training activity.

Citations (3)

Summary

We haven't generated a summary for this paper yet.