Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Integral decomposition for the solutions of the generalized Cattaneo equation (2107.09694v1)

Published 20 Jul 2021 in cond-mat.stat-mech, math-ph, and math.MP

Abstract: We present the integral decomposition for the fundamental solution of the generalized Cattaneo equation with both time derivatives smeared through convoluting them with some memory kernels. For power-law kernels $t{-\alpha}$, $\alpha\in(0,1]$ this equation becomes the time fractional one governed by the Caputo derivatives which highest order is 2. To invert the solutions from the Fourier-Laplace domain to the space-time domain we use analytic methods based on the Efross theorem and find out that solutions looked for are represented by integral decompositions which tangle the fundamental solution of the standard Cattaneo equation with non-negative and normalizable functions being uniquely dependent on the memory kernels. Furthermore, the use of methodology arising from the theory of complete Bernstein functions allows us to assign such constructed integral decompositions the interpretation of subordination. This fact is preserved in two limit cases built into the generalized Cattaneo equations, i.e., either the diffusion or the wave equations. We point out that applying the Efross theorem enables us to go beyond the standard approach which usually leads to the integral decompositions involving the Gaussian distribution describing the Brownian motion. Our approach clarifies puzzling situation which takes place for the power-law kernels $t{-\alpha}$ for which the subordination based on the Brownian motion does not work if $\alpha\in(1/2,1]$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube