Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A bi-fidelity stochastic collocation method for transport equations with diffusive scaling and multi-dimensional random inputs (2107.09250v1)

Published 20 Jul 2021 in math.NA and cs.NA

Abstract: In this paper, we consider the development of efficient numerical methods for linear transport equations with random parameters and under the diffusive scaling. We extend to the present case the bi-fidelity stochastic collocation method introduced in [33,50,51]. For the high-fidelity transport model, the asymptotic-preserving scheme [29] is used for each stochastic sample. We employ the simple two-velocity Goldstein-Taylor equation as low-fidelity model to accelerate the convergence of the uncertainty quantification process. The choice is motivated by the fact that both models, high fidelity and low fidelity, share the same diffusion limit. Speed-up is achieved by proper selection of the collocation points and relative approximation of the high-fidelity solution. Extensive numerical experiments are conducted to show the efficiency and accuracy of the proposed method, even in non diffusive regimes, with empirical error bound estimations as studied in [16].

Citations (5)

Summary

We haven't generated a summary for this paper yet.