Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MARC: Mining Association Rules from datasets by using Clustering models (2107.08814v1)

Published 14 Jul 2021 in cs.DB and cs.LG

Abstract: Association rules are useful to discover relationships, which are mostly hidden, between the different items in large datasets. Symbolic models are the principal tools to extract association rules. This basic technique is time-consuming, and it generates a big number of associated rules. To overcome this drawback, we suggest a new method, called MARC, to extract the more important association rules of two important levels: Type I, and Type II. This approach relies on a multi-topographic unsupervised neural network model as well as clustering quality measures that evaluate the success of a given numerical classification model to behave as a natural symbolic model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.