Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a semantic and statistical selection of association rules (1305.5824v1)

Published 24 May 2013 in cs.DB

Abstract: The increasing growth of databases raises an urgent need for more accurate methods to better understand the stored data. In this scope, association rules were extensively used for the analysis and the comprehension of huge amounts of data. However, the number of generated rules is too large to be efficiently analyzed and explored in any further process. Association rules selection is a classical topic to address this issue, yet, new innovated approaches are required in order to provide help to decision makers. Hence, many interesting- ness measures have been defined to statistically evaluate and filter the association rules. However, these measures present two major problems. On the one hand, they do not allow eliminating irrelevant rules, on the other hand, their abun- dance leads to the heterogeneity of the evaluation results which leads to confusion in decision making. In this paper, we propose a two-winged approach to select statistically in- teresting and semantically incomparable rules. Our statis- tical selection helps discovering interesting association rules without favoring or excluding any measure. The semantic comparability helps to decide if the considered association rules are semantically related i.e comparable. The outcomes of our experiments on real datasets show promising results in terms of reduction in the number of rules.

Citations (4)

Summary

We haven't generated a summary for this paper yet.