Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ranked Sparsity: A Cogent Regularization Framework for Selecting and Estimating Feature Interactions and Polynomials (2107.07594v2)

Published 15 Jul 2021 in stat.ME

Abstract: We explore and illustrate the concept of ranked sparsity, a phenomenon that often occurs naturally in modeling applications when an expected disparity exists in the quality of information between different feature sets. Its presence can cause traditional and modern model selection methods to fail because such procedures commonly presume that each potential parameter is equally worthy of entering into the final model - we call this presumption "covariate equipoise". However, this presumption does not always hold, especially in the presence of derived variables. For instance, when all possible interactions are considered as candidate predictors, the premise of covariate equipoise will often produce over-specified and opaque models. The sheer number of additional candidate variables grossly inflates the number of false discoveries in the interactions, resulting in unnecessarily complex and difficult-to-interpret models with many (truly spurious) interactions. We suggest a modeling strategy that requires a stronger level of evidence in order to allow certain variables (e.g. interactions) to be selected in the final model. This ranked sparsity paradigm can be implemented with the sparsity-ranked lasso (SRL). We compare the performance of SRL relative to competing methods in a series of simulation studies, showing that the SRL is a very attractive method because it is fast, accurate, and produces more transparent models (with fewer false interactions). We illustrate its utility in an application to predict the survival of lung cancer patients using a set of gene expression measurements and clinical covariates, searching in particular for gene-environment interactions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.