Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blending search queries with social media data to improve forecasts of economic indicators (2107.06096v1)

Published 9 Jul 2021 in cs.SI, physics.soc-ph, stat.AP, and stat.ME

Abstract: The forecasting of political, economic, and public health indicators using internet activity has demonstrated mixed results. For example, while some measures of explicitly surveyed public opinion correlate well with social media proxies, the opportunity for profitable investment strategies to be driven solely by sentiment extracted from social media appears to have expired. Nevertheless, the internet's space of potentially predictive input signals is combinatorially vast and will continue to invite careful exploration. Here, we combine unemployment related search data from Google Trends with economic language on Twitter to attempt to nowcast and forecast: 1. State and national unemployment claims for the US, and 2. Consumer confidence in G7 countries. Building off of a recently developed search-query-based model, we show that incorporating Twitter data improves forecasting of unemployment claims, while the original method remains marginally better at nowcasting. Enriching the input signal with temporal statistical features (e.g., moving average and rate of change) further reduces errors, and improves the predictive utility of the proposed method when applied to other economic indices, such as consumer confidence.

Summary

We haven't generated a summary for this paper yet.