Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid Method of Sentiment Analysis and Machine Learning Algorithm for the U.S. Presidential Election Forecasting (2312.05584v1)

Published 9 Dec 2023 in cs.SI

Abstract: U.S. Presidential Election forecasting has been a research interest for several decades. Currently, election prediction consists of two main approaches: traditional models that incorporate economic data and poll surveys, and models that leverage Twitter (or X) and other social media platforms due to their increasing popularity in the past decade. However, traditional approaches have predominantly focused on national-level predictions, while social media-based approaches often oversimplify the nuanced differences between online discourse and the broader voting population's political landscape. In this work, we perform a hybrid method of both the machine learning algorithm and the sentiment analysis on the state level with various independent variables including census data, economic indicators, polling averages, and the newly defined average sentiment scores from Twitter. Our prediction for the 2020 U.S. Presidential Election yielded promising results. Most of our models successfully predicted a victory for the Democratic candidate with 96% accuracy using Gradient Boosting Trees and Multi-Layer Perceptron algorithms. This novel prediction framework addresses the limitations of existing U.S. Presidential Election forecasting approaches, particularly in terms of state-level predictions. It provides a valuable foundation for future research in this field and contributes to advancing our understanding of election dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. M. S. Lewis-Beck and M. Stegmaier, “Us presidential election forecasting,” PS: Political Science & Politics, vol. 47, pp. 284 – 288, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:154389407
  2. D. A. Linzer, “Dynamic bayesian forecasting of presidential elections in the states,” Journal of the American Statistical Association, vol. 108, no. 501, pp. 124–134, 2013.
  3. S. Jackman, “The predictive power of uniform swing,” PS: Political Science & Politics, vol. 47, no. 2, pp. 317–321, 2014.
  4. J. E. Campbell, H. Norpoth, A. I. Abramowitz, M. S. Lewis-Beck, C. Tien, R. S. Erikson, C. Wlezien, B. Lockerbie, T. M. Holbrook, B. Jérôme, V. Jérôme-Speziari, A. Graefe, J. S. Armstrong, R. J. Jones, and A. G. Cuzán, “A recap of the 2016 election forecasts,” PS: Political Science & Politics, vol. 50, pp. 331 – 338, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:157322250
  5. N. A. Valentino, J. L. King, and W. W. Hill, “Polling and prediction in the 2016 presidential election,” Computer, vol. 50, pp. 110–115, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:28916258
  6. B. O’Connor, R. Balasubramanyan, B. Routledge, and N. Smith, “From tweets to polls: Linking text sentiment to public opinion time series,” in Proceedings of the international AAAI conference on web and social media, vol. 4, no. 1, 2010, pp. 122–129.
  7. N. Beauchamp, “Predicting and interpolating state‐level polls using twitter textual data,” American Journal of Political Science, vol. 61, pp. 490–503, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:13150074
  8. A. Yavari, H. Hassanpour, B. R. Cami, and M. Mahdavi, “Election prediction based on sentiment analysis using twitter data,” International Journal of Engineering, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:245347302
  9. A. Mislove, S. Lehmann, Y.-Y. Ahn, J.-P. Onnela, and J. N. Rosenquist, “Understanding the demographics of twitter users,” Proceedings of the International AAAI Conference on Web and Social Media, 2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:15924076
  10. D. Anuta, J. Churchin, and J. Luo, “Election bias: Comparing polls and twitter in the 2016 u.s. election,” ArXiv, vol. abs/1701.06232, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:18048854
  11. R. Liu, X. Yao, C. Guo, and X. Wei, “Can we forecast presidential election using twitter data? an integrative modelling approach,” Annals of GIS, vol. 27, no. 1, pp. 43–56, 2021.
  12. D. W. Nickerson and T. Rogers, “Political campaigns and big data,” Journal of Economic Perspectives, vol. 28, no. 2, pp. 51–74, May 2014. [Online]. Available: https://www.aeaweb.org/articles?id=10.1257/jep.28.2.51
  13. C. Houle, “Religion, language, race and ethnic voting,” Electoral Studies, vol. 61, p. 102052, 2019.
  14. M. S. Lewis-Beck and M. Stegmaier, “Economic determinants of electoral outcomes,” Annual review of political science, vol. 3, no. 1, pp. 183–219, 2000.
  15. G. M. Turner-McGrievy and M. W. Beets, “Tweet for health: using an online social network to examine temporal trends in weight loss-related posts,” Translational Behavioral Medicine, vol. 5, pp. 160–166, 2015.
  16. J. K. Harris, B. Choucair, R. C. Maier, N. Jolani, and J. M. Bernhardt, “Are public health organizations tweeting to the choir? understanding local health department twitter followership,” Journal of Medical Internet Research, vol. 16, 2014.
  17. D. Loureiro, F. Barbieri, L. Neves, L. Espinosa Anke, and J. Camacho-collados, “TimeLMs: Diachronic language models from Twitter,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations.   Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 251–260. [Online]. Available: https://aclanthology.org/2022.acl-demo.25
  18. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” ArXiv, vol. abs/1907.11692, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:198953378
  19. R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all you need,” Information Fusion, vol. 81, pp. 84–90, 2022.
  20. D. McElfresh, S. Khandagale, J. Valverde, G. Ramakrishnan, M. Goldblum, C. White et al., “When do neural nets outperform boosted trees on tabular data?” arXiv preprint arXiv:2305.02997, 2023.
  21. Z. Zhou, M. Serafino, L. Cohan, G. Caldarelli, and H. A. Makse, “Why polls fail to predict elections,” 2021.
  22. C. Nollenberger and G.-M. Unger, “Fundamentals-based state-level forecasts of the 2020 us presidential election,” 2020.
  23. J. Lima, M. Santana, A. Correa, and K. Brito, “The use and impact of tiktok in the 2022 brazilian presidential election,” in Proceedings of the 24th Annual International Conference on Digital Government Research, 2023, pp. 144–152.
  24. J. Zhao, “Political stance prediction on youtube comments,” 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Guocheng Feng (2 papers)
  2. Huaiyu Cai (2 papers)
  3. Kaihao Chen (1 paper)
  4. Zhijian Li (16 papers)
Reddit Logo Streamline Icon: https://streamlinehq.com

Reddit

  1. ML for election prediction (0 points, 0 comments)