Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Challenges and Opportunities in the African Agricultural Sector -- A General Perspective (2107.05101v1)

Published 11 Jul 2021 in cs.LG and cs.AI

Abstract: The improvement of computers' capacities, advancements in algorithmic techniques, and the significant increase of available data have enabled the recent developments of AI technology. One of its branches, called Machine Learning (ML), has shown strong capacities in mimicking characteristics attributed to human intelligence, such as vision, speech, and problem-solving. However, as previous technological revolutions suggest, their most significant impacts could be mostly expected on other sectors that were not traditional users of that technology. The agricultural sector is vital for African economies; improving yields, mitigating losses, and effective management of natural resources are crucial in a climate change era. Machine Learning is a technology with an added value in making predictions, hence the potential to reduce uncertainties and risk across sectors, in this case, the agricultural sector. The purpose of this paper is to contextualize and discuss barriers to ML-based solutions for African agriculture. In the second section, we provided an overview of ML technology from a historical and technical perspective and its main driving force. In the third section, we provided a brief review of the current use of ML in agriculture. Finally, in section 4, we discuss ML growing interest in Africa and the potential barriers to creating and using ML-based solutions in the agricultural sector.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Racine Ly (3 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.