2000 character limit reached
COVID Detection in Chest CTs: Improving the Baseline on COV19-CT-DB (2107.04808v2)
Published 10 Jul 2021 in eess.IV and cs.CV
Abstract: The paper presents a comparative analysis of three distinct approaches based on deep learning for COVID-19 detection in chest CTs. The first approach is a volumetric one, involving 3D convolutions, while the other two approaches perform at first slice-wise classification and then aggregate the results at the volume level. The experiments are carried on the COV19-CT-DB dataset, with the aim of addressing the challenge raised by the MIA-COV19D Competition within ICCV 2021. Our best results on the validation subset reach a macro-F1 score of 0.92, which improves considerably the baseline score of 0.70 set by the organizers.