Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Scopeformer: n-CNN-ViT Hybrid Model for Intracranial Hemorrhage Classification (2107.04575v1)

Published 7 Jul 2021 in eess.IV and cs.LG

Abstract: We propose a feature generator backbone composed of an ensemble of convolutional neuralnetworks (CNNs) to improve the recently emerging Vision Transformer (ViT) models. We tackled the RSNA intracranial hemorrhage classification problem, i.e., identifying various hemorrhage types from computed tomography (CT) slices. We show that by gradually stacking several feature maps extracted using multiple Xception CNNs, we can develop a feature-rich input for the ViT model. Our approach allowed the ViT model to pay attention to relevant features at multiple levels. Moreover, pretraining the n CNNs using various paradigms leads to a diverse feature set and further improves the performance of the proposed n-CNN-ViT. We achieved a test accuracy of 98.04% with a weighted logarithmic loss value of 0.0708. The proposed architecture is modular and scalable in both the number of CNNs used for feature extraction and the size of the ViT.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com