Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

CNN-based Local Vision Transformer for COVID-19 Diagnosis (2207.02027v1)

Published 5 Jul 2022 in eess.IV and cs.CV

Abstract: Deep learning technology can be used as an assistive technology to help doctors quickly and accurately identify COVID-19 infections. Recently, Vision Transformer (ViT) has shown great potential towards image classification due to its global receptive field. However, due to the lack of inductive biases inherent to CNNs, the ViT-based structure leads to limited feature richness and difficulty in model training. In this paper, we propose a new structure called Transformer for COVID-19 (COVT) to improve the performance of ViT-based architectures on small COVID-19 datasets. It uses CNN as a feature extractor to effectively extract local structural information, and introduces average pooling to ViT's Multilayer Perception(MLP) module for global information. Experiments show the effectiveness of our method on the two COVID-19 datasets and the ImageNet dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.