Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Holomorphic family of Dirac-Coulomb Hamiltonians in arbitrary dimension (2107.03785v3)

Published 8 Jul 2021 in math-ph, hep-th, math.MP, math.SP, and quant-ph

Abstract: We study massless 1-dimensional Dirac-Coulomb Hamiltonians, that is, operators on the half-line of the form $D_{\omega,\lambda}:=\begin{bmatrix}-\frac{\lambda+\omega}{x}&-\partial_x \ \partial_x & -\frac{\lambda-\omega}{x}\end{bmatrix}$. We describe their closed realizations in the sense of the Hilbert space $L2(\mathbb R_+,\mathbb C2)$, allowing for complex values of the parameters $\lambda,\omega$. In physical situations, $\lambda$ is proportional to the electric charge and $\omega$ is related to the angular momentum. We focus on realizations of $D_{\omega,\lambda}$ homogeneous of degree $-1$. They can be organized in a single holomorphic family of closed operators parametrized by a certain 2-dimensional complex manifold. We describe the spectrum and the numerical range of these realizations. We give an explicit formula for the integral kernel of their resolvent in terms of Whittaker functions. We also describe their stationary scattering theory, providing formulas for a natural pair of diagonalizing operators and for the scattering operator. It is well-known that $D_{\omega,\lambda}$ arise after separation of variables of the Dirac-Coulomb operator in dimension 3. We give a simple argument why this is still true in any dimension. Furthermore, we explain the relationship of spherically symmetric Dirac operators with the Dirac operator on the sphere and its eigenproblem. Our work is mainly motivated by a large literature devoted to distinguished self-adjoint realizations of Dirac-Coulomb Hamiltonians. We show that these realizations arise naturally if the holomorphy is taken as the guiding principle. Furthermore, they are infrared attractive fixed points of the scaling action. Beside applications in relativistic quantum mechanics, Dirac-Coulomb Hamiltonians are argued to provide a natural setting for the study of Whittaker (or, equivalently, confluent hypergeometric) functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.