Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAN-based Data Augmentation for Chest X-ray Classification (2107.02970v1)

Published 7 Jul 2021 in eess.IV, cs.CV, and cs.LG

Abstract: A common problem in computer vision -- particularly in medical applications -- is a lack of sufficiently diverse, large sets of training data. These datasets often suffer from severe class imbalance. As a result, networks often overfit and are unable to generalize to novel examples. Generative Adversarial Networks (GANs) offer a novel method of synthetic data augmentation. In this work, we evaluate the use of GAN- based data augmentation to artificially expand the CheXpert dataset of chest radiographs. We compare performance to traditional augmentation and find that GAN-based augmentation leads to higher downstream performance for underrepresented classes. Furthermore, we see that this result is pronounced in low data regimens. This suggests that GAN-based augmentation a promising area of research to improve network performance when data collection is prohibitively expensive.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shobhita Sundaram (7 papers)
  2. Neha Hulkund (5 papers)
Citations (33)