Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Traffic Generation for Benchmarking Data Centre Networks (2107.01398v2)

Published 3 Jul 2021 in cs.NI

Abstract: Benchmarking is commonly used in research fields, such as computer architecture design and machine learning, as a powerful paradigm for rigorously assessing, comparing, and developing novel technologies. However, the data centre networking community lacks a standard open-access benchmark. This is curtailing the community's understanding of existing systems and hindering the ability with which novel technologies can be developed, compared, and tested. We present TrafPy; an open-access framework for generating both realistic and custom data centre network traffic traces. TrafPy is compatible with any simulation, emulation, or experimentation environment, and can be used for standardised benchmarking and for investigating the properties and limitations of network systems such as schedulers, switches, routers, and resource managers. To demonstrate the efficacy of TrafPy, we use it to conduct a thorough investigation into the sensitivity of 4 canonical scheduling algorithms (shortest remaining processing time, fair share, first fit, and random) to varying traffic trace characteristics. We show how the fundamental scheduler performance insights revealed by these tests translate to 4 realistic data centre network types; University, Private Enterprise, Commercial Cloud, and Social Media Cloud. We then draw conclusions as to which types of scheduling policies are most suited to which types of network load conditions and traffic characteristics, leading to the possibility of application-informed decision making at the design stage and new dynamically adaptable scheduling policies. TrafPy is open-sourced via GitHub and all data associated with this manuscript via RDR.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.