Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential importance sampling for estimating expectations over the space of perfect matchings (2107.00850v2)

Published 2 Jul 2021 in math.PR and cs.DS

Abstract: This paper makes three contributions to estimating the number of perfect matching in bipartite graphs. First, we prove that the popular sequential importance sampling algorithm works in polynomial time for dense bipartite graphs. More carefully, our algorithm gives a $(1\pm\epsilon)$-approximation for the number of perfect matchings of a $\lambda$-dense bipartite graph, using $O(n{\frac{1-2\lambda}{\lambda}\epsilon{-2}})$ samples. With size $n$ on each side and for $\frac{1}{2}>\lambda>0$, a $\lambda$-dense bipartite graph has all degrees greater than $(\lambda+\frac{1}{2})n$. Second, practical applications of the algorithm require many calls to matching algorithms. A novel preprocessing step is provided which makes significant improvements. Third, three applications are provided. The first is for counting Latin squares, the second is a practical way of computing the greedy algorithm for a card-guessing game with feedback, and the third is for stochastic block models. In all three examples, sequential importance sampling allows treating practical problems of reasonably large sizes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.