Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Matchings via Glauber Dynamics (1107.2482v2)

Published 13 Jul 2011 in cs.DS

Abstract: In this paper we study the classic problem of computing a maximum cardinality matching in general graphs $G = (V, E)$. The best known algorithm for this problem till date runs in $O(m \sqrt{n})$ time due to Micali and Vazirani \cite{MV80}. Even for general bipartite graphs this is the best known running time (the algorithm of Karp and Hopcroft \cite{HK73} also achieves this bound). For regular bipartite graphs one can achieve an $O(m)$ time algorithm which, following a series of papers, has been recently improved to $O(n \log n)$ by Goel, Kapralov and Khanna (STOC 2010) \cite{GKK10}. In this paper we present a randomized algorithm based on the Markov Chain Monte Carlo paradigm which runs in $O(m \log2 n)$ time, thereby obtaining a significant improvement over \cite{MV80}. We use a Markov chain similar to the \emph{hard-core model} for Glauber Dynamics with \emph{fugacity} parameter $\lambda$, which is used to sample independent sets in a graph from the Gibbs Distribution \cite{V99}, to design a faster algorithm for finding maximum matchings in general graphs. Our result crucially relies on the fact that the mixing time of our Markov Chain is independent of $\lambda$, a significant deviation from the recent series of works \cite{GGSVY11,MWW09, RSVVY10, S10, W06} which achieve computational transition (for estimating the partition function) on a threshold value of $\lambda$. As a result we are able to design a randomized algorithm which runs in $O(m\log2 n)$ time that provides a major improvement over the running time of the algorithm due to Micali and Vazirani. Using the conductance bound, we also prove that mixing takes $\Omega(\frac{m}{k})$ time where $k$ is the size of the maximum matching.

Citations (1)

Summary

We haven't generated a summary for this paper yet.