Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overhead-MNIST: Machine Learning Baselines for Image Classification (2107.00436v2)

Published 1 Jul 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Twenty-three machine learning algorithms were trained then scored to establish baseline comparison metrics and to select an image classification algorithm worthy of embedding into mission-critical satellite imaging systems. The Overhead-MNIST dataset is a collection of satellite images similar in style to the ubiquitous MNIST hand-written digits found in the machine learning literature. The CatBoost classifier, Light Gradient Boosting Machine, and Extreme Gradient Boosting models produced the highest accuracies, Areas Under the Curve (AUC), and F1 scores in a PyCaret general comparison. Separate evaluations showed that a deep convolutional architecture was the most promising. We present results for the overall best performing algorithm as a baseline for edge deployability and future performance improvement: a convolutional neural network (CNN) scoring 0.965 categorical accuracy on unseen test data.

Citations (7)

Summary

We haven't generated a summary for this paper yet.