Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian aggregation improves traditional single image crop classification approaches (2004.03468v1)

Published 7 Apr 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Machine learning (ML) methods and neural networks (NN) are widely implemented for crop types recognition and classification based on satellite images. However, most of these studies use several multi-temporal images which could be inapplicable for cloudy regions. We present a comparison between the classical ML approaches and U-Net NN for classifying crops with a single satellite image. The results show the advantages of using field-wise classification over pixel-wise approach. We first used a Bayesian aggregation for field-wise classification and improved on 1.5% results between majority voting aggregation. The best result for single satellite image crop classification is achieved for gradient boosting with an overall accuracy of 77.4% and macro F1-score 0.66.

Summary

We haven't generated a summary for this paper yet.