Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anti-unification of Unordered Goals

Published 1 Jul 2021 in cs.CC and cs.LO | (2107.00341v2)

Abstract: Anti-unification in logic programming refers to the process of capturing common syntactic structure among given goals, computing a single new goal that is more general called a generalization of the given goals. Finding an arbitrary common generalization for two goals is trivial, but looking for those common generalizations that are either as large as possible (called largest common generalizations) or as specific as possible (called most specific generalizations) is a non-trivial optimization problem, in particular when goals are considered to be \textit{unordered} sets of atoms. In this work we provide an in-depth study of the problem by defining two different generalization relations. We formulate a characterization of what constitutes a most specific generalization in both settings. While these generalizations can be computed in polynomial time, we show that when the number of variables in the generalization needs to be minimized, the problem becomes NP-hard. We subsequently revisit an abstraction of the largest common generalization when anti-unification is based on injective variable renamings, and prove that it can be computed in polynomially bounded time.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.