Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lattice Operations on Terms over Similar Signatures (1709.00964v4)

Published 4 Sep 2017 in cs.PL

Abstract: Unification and generalization are operations on two terms computing respectively their greatest lower bound and least upper bound when the terms are quasi-ordered by subsumption up to variable renaming (i.e., $t_1\preceq t_2$ iff $t_1 = t_2\sigma$ for some variable substitution $\sigma$). When term signatures are such that distinct functor symbols may be related with a fuzzy equivalence (called a similarity), these operations can be formally extended to tolerate mismatches on functor names and/or arity or argument order. We reformulate and extend previous work with a declarative approach defining unification and generalization as sets of axioms and rules forming a complete constraint-normalization proof system. These include the Reynolds-Plotkin term-generalization procedures, Maria Sessa's "weak" unification with partially fuzzy signatures and its corresponding generalization, as well as novel extensions of such operations to fully fuzzy signatures (i.e., similar functors with possibly different arities). One advantage of this approach is that it requires no modification of the conventional data structures for terms and substitutions. This and the fact that these declarative specifications are efficiently executable conditional Horn-clauses offers great practical potential for fuzzy information-handling applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.