Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Almost-Orthogonal Bases for Inner Product Polynomials (2107.00216v2)

Published 1 Jul 2021 in math.CO and cs.CC

Abstract: In this paper, we consider low-degree polynomials of inner products between a collection of random vectors. We give an almost orthogonal basis for this vector space of polynomials when the random vectors are Gaussian, spherical, or Boolean. In all three cases, our basis admits an interesting combinatorial description based on the topology of the underlying graph of inner products. We also analyze the expected value of the product of two polynomials in our basis. In all three cases, we show that this expected value can be expressed in terms of collections of matchings on the underlying graph of inner products. In the Gaussian and Boolean cases, we show that this expected value is always non-negative. In the spherical case, we show that this expected value can be negative but we conjecture that if the underlying graph of inner products is planar then this expected value will always be non-negative.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.