Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly Supervised Temporal Adjacent Network for Language Grounding (2106.16136v1)

Published 30 Jun 2021 in cs.CV

Abstract: Temporal language grounding (TLG) is a fundamental and challenging problem for vision and language understanding. Existing methods mainly focus on fully supervised setting with temporal boundary labels for training, which, however, suffers expensive cost of annotation. In this work, we are dedicated to weakly supervised TLG, where multiple description sentences are given to an untrimmed video without temporal boundary labels. In this task, it is critical to learn a strong cross-modal semantic alignment between sentence semantics and visual content. To this end, we introduce a novel weakly supervised temporal adjacent network (WSTAN) for temporal language grounding. Specifically, WSTAN learns cross-modal semantic alignment by exploiting temporal adjacent network in a multiple instance learning (MIL) paradigm, with a whole description paragraph as input. Moreover, we integrate a complementary branch into the framework, which explicitly refines the predictions with pseudo supervision from the MIL stage. An additional self-discriminating loss is devised on both the MIL branch and the complementary branch, aiming to enhance semantic discrimination by self-supervising. Extensive experiments are conducted on three widely used benchmark datasets, \emph{i.e.}, ActivityNet-Captions, Charades-STA, and DiDeMo, and the results demonstrate the effectiveness of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuechen Wang (9 papers)
  2. Jiajun Deng (75 papers)
  3. Wengang Zhou (153 papers)
  4. Houqiang Li (236 papers)
Citations (59)

Summary

We haven't generated a summary for this paper yet.