Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to solve geometric construction problems from images (2106.14195v1)

Published 27 Jun 2021 in cs.CV, cs.AI, cs.CG, cs.LG, and cs.LO

Abstract: We describe a purely image-based method for finding geometric constructions with a ruler and compass in the Euclidea geometric game. The method is based on adapting the Mask R-CNN state-of-the-art image processing neural architecture and adding a tree-based search procedure to it. In a supervised setting, the method learns to solve all 68 kinds of geometric construction problems from the first six level packs of Euclidea with an average 92% accuracy. When evaluated on new kinds of problems, the method can solve 31 of the 68 kinds of Euclidea problems. We believe that this is the first time that a purely image-based learning has been trained to solve geometric construction problems of this difficulty.

Citations (2)

Summary

We haven't generated a summary for this paper yet.