Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Cadastral Boundary Detection of Very High Resolution Images Using Mask R-CNN (2309.16708v1)

Published 17 Aug 2023 in cs.CV and cs.LG

Abstract: Recently, there has been a high demand for accelerating and improving the detection of automatic cadastral mapping. As this problem is in its starting point, there are many methods of computer vision and deep learning that have not been considered yet. In this paper, we focus on deep learning and provide three geometric post-processing methods that improve the quality of the work. Our framework includes two parts, each of which consists of a few phases. Our solution to this problem uses instance segmentation. In the first part, we use Mask R-CNN with the backbone of pre-trained ResNet-50 on the ImageNet dataset. In the second phase, we apply three geometric post-processing methods to the output of the first part to get better overall output. Here, we also use computational geometry to introduce a new method for simplifying lines which we call it pocket-based simplification algorithm. For evaluating the quality of our solution, we use popular formulas in this field which are recall, precision and F-score. The highest recall we gain is 95 percent which also maintains high Precision of 72 percent. This resulted in an F-score of 82 percent. Implementing instance segmentation using Mask R-CNN with some geometric post-processes to its output gives us promising results for this field. Also, results show that pocket-based simplification algorithms work better for simplifying lines than Douglas-Puecker algorithm.

Summary

We haven't generated a summary for this paper yet.