Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Score-Based Change Detection for Gradient-Based Learning Machines (2106.14122v1)

Published 27 Jun 2021 in stat.ML and cs.LG

Abstract: The widespread use of machine learning algorithms calls for automatic change detection algorithms to monitor their behavior over time. As a machine learning algorithm learns from a continuous, possibly evolving, stream of data, it is desirable and often critical to supplement it with a companion change detection algorithm to facilitate its monitoring and control. We present a generic score-based change detection method that can detect a change in any number of components of a machine learning model trained via empirical risk minimization. This proposed statistical hypothesis test can be readily implemented for such models designed within a differentiable programming framework. We establish the consistency of the hypothesis test and show how to calibrate it to achieve a prescribed false alarm rate. We illustrate the versatility of the approach on synthetic and real data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.