Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning for Mean Field Games, with Applications to Economics (2106.13755v1)

Published 25 Jun 2021 in math.OC and cs.LG

Abstract: Mean field games (MFG) and mean field control problems (MFC) are frameworks to study Nash equilibria or social optima in games with a continuum of agents. These problems can be used to approximate competitive or cooperative games with a large finite number of agents and have found a broad range of applications, in particular in economics. In recent years, the question of learning in MFG and MFC has garnered interest, both as a way to compute solutions and as a way to model how large populations of learners converge to an equilibrium. Of particular interest is the setting where the agents do not know the model, which leads to the development of reinforcement learning (RL) methods. After reviewing the literature on this topic, we present a two timescale approach with RL for MFG and MFC, which relies on a unified Q-learning algorithm. The main novelty of this method is to simultaneously update an action-value function and a distribution but with different rates, in a model-free fashion. Depending on the ratio of the two learning rates, the algorithm learns either the MFG or the MFC solution. To illustrate this method, we apply it to a mean field problem of accumulated consumption in finite horizon with HARA utility function, and to a trader's optimal liquidation problem.

Citations (25)

Summary

We haven't generated a summary for this paper yet.