Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of Multi-Scale Reinforcement Q-Learning Algorithms for Mean Field Game and Control Problems (2312.06659v2)

Published 11 Dec 2023 in math.OC

Abstract: We establish the convergence of the unified two-timescale Reinforcement Learning (RL) algorithm presented in a previous work by Angiuli et al. This algorithm provides solutions to Mean Field Game (MFG) or Mean Field Control (MFC) problems depending on the ratio of two learning rates, one for the value function and the other for the mean field term. Our proof of convergence highlights the fact that in the case of MFC several mean field distributions need to be updated and for this reason we present two separate algorithms, one for MFG and one for MFC. We focus on a setting with finite state and action spaces, discrete time and infinite horizon. The proofs of convergence rely on a generalization of the two-timescale approach of Borkar. The accuracy of approximation to the true solutions depends on the smoothing of the policies. We provide a numerical example illustrating the convergence.

Citations (9)

Summary

We haven't generated a summary for this paper yet.