Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakening and Iterating Laws using String Diagrams (2205.03640v4)

Published 7 May 2022 in cs.LO and math.CT

Abstract: Distributive laws are a standard way of combining two monads, providing a compositional approach for reasoning about computational effects in semantics. Situations where no such law exists can sometimes be handled by weakening the notion of distributive law, still recovering a composite monad. A celebrated result from Eugenia Cheng shows that combining $n$ monads is possible by iterating more distributive laws, provided they satisfy a coherence condition called the Yang-Baxter equation. Moreover, the order of composition does not matter, leading to a form of associativity. The main contribution of this paper is to generalise the associativity of iterated composition to weak distributive laws in the case of $n = 3$ monads. To this end, we use string-diagrammatic notation, which significantly helps make increasingly complex proofs more readable. We also provide examples of new weak distributive laws arising from iteration.

Summary

We haven't generated a summary for this paper yet.